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Abstract— Indoor and outdoor field trial measurements are
used to validate the autocorrelation function derived in an
exact manner for the Weibull fading signal. Comparisons are
performed and an excellent fitting to the field measurements
have been found. Moreover, in order to explore the first-
order statistics, the cumulative density function (CDF) was
also computed for the same cases.

Index Terms— Field trials, Weibull autocorrelation
function, Weibull distribution, validation.

I. INTRODUCTION

The performance of the wireless channel is strongly
affected by the multipath fading phenomena. In order to
mitigate this effect, a deep knowledge of the characteristics
and correct modeling of fading channels is imperative.
Many statistical models have been used to describe the
multipath fading phenomenon [1]. Some of these models
produce very accurate results, especially the Rice and
Nakagami-m distributions [2]. Another useful model is
Weibull, which was first used in problems dealing with
reliability. Indeed, the Weibull distribution is a simple and
flexible statistical model for describing multipath fading
phenomena, for both indoor and outdoor propagation
environments.

Experimental data supporting the Weibull fading model
have been reported in [3]. Indoor and outdoor applications
of the Weibull model were considered in [4] and [5],
respectively. In [6], the Weibull and Nakagami-m models
were recommended for theoretical studies as the introduce
slope changes in the distribution tail, which compensates
for shortcomings of the Rayleigh model. In [7], measure-
ments revealed that the Weibull distribution had the best fit
to path-loss models of the narrow-band digital enhanced
cordless telecommunications (DECT) system at reference
frequency 1.89 GHz.

A substantial portion of the literature dealing with
field measurements in Weibull fading channels has been
devoted to the study of the first order statistics. Few works
investigate the high order statistics of the Weibull channel
model. In [8], the level crossing rate (LCR) and the average
fade duration (AFD) of the Weibull channel have been
obtained, whereas in [9] these statistics have been attained
for the diversity-combined case. Very recently [10], a

simple-closed form expression for the generalized cross-
moments of the Weibull distribution has been derived.
From this expression, the derivation of the autocorrelation
function follows directly.

In this paper, the autocorrelation function derived in
[10] is validated through field measurements. Comparisons
have been performed and an excellent fitting to the field
measurements have been found. Moreover, in order to
explore the first-order statistics, the cumulative density
function (CDF) was also computed for the same cases.

II. THE AUTOCORRELATION FUNCTION

The temporal autocorrelation function AR(τ) of the
Weibull envelope R has been recently obtained in [10]
as

AR(τ) , E[R(t)R(t + τ)] =
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where r̂ = α

√
E[Rα] is the α-root mean value of Rα,

E [·] denotes the expectation operator, α is the Weibull
parameter, Γ(.) is the Gamma function [11, Eq. 8.310.1],
2F1(.) is the Gauss hypergeometric function [11, Eq.
9.14.1], J0(.) is the Bessel function of the first kind and
zeroth order [11, Eq. 8.401], and ωD is the maximum
Doppler shift given in rad/s.

Using the space-time duality of the wireless channel
[12], it is readily known that ωDτ = 2πd/λ, where d is the
distance between antennas, and λ is the carrier wavelength.
Then, the spacial autocorrelation function AR(d) of R is
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A. The moment-based α-estimator

The moments of the Weibull envelope are given as [10]

E[Rk] = r̂kΓ(1 + k/α) (3)

From (3), it follows that



Ei[Rj ]

Ej [Ri]
=

Γi (1 + j/α)

Γj (1 + i/α)
(4)

For a particular case in which i = 2 and j = 1, (4)
yields

E2[R]

E[R2]
=

Γ2 (1 + 1/α)

Γ (1 + 2/α)
(5)

Note that the estimator presented in (5) is given in terms
of the ratio of the squared first and second moments. Of
course, from (4) there are other moment-based estimators,
however, the one presented in (5) is given by the lowest
integer order.

Given a set of measured data for the fading envelope
R, the practical procedure in order to determine the
distribution parameter α is to find the root of the
transcendental equation (5). In fact, this method provides
a simple and low-complexity parameter estimator.

III. FIELD TRIALS AND VALIDATION

A series of field trials was conducted at the University
of Campinas (Unicamp), Brazil, in order to validate the
autocorrelation function of the Weibull envelope. The
transmitter was placed on the rooftop of one of the
buildings and the receiver travelled through the campus
as well as within the buildings. The mobile reception
equipment was especially assembled for this purpose.
Basically, the setup consisted of a vertically polarized
omnidirectional receiving antenna, a low noise amplifier, a
spectrum analyzer, data acquisition apparatus, a notebook
computer, and a distance transducer for carrying out the
signal sampling. The transmission consisted of a CW tone
at 1.8 GHz. The spectrum analyzer was set to zero span
and centered at the desired frequency, and its video output
used as the input of the data acquisition equipment with
a sampling rate of λ/14. The local mean was estimated
by the moving average method, with the average being
conveniently taken over samples symmetrically adjacent to
every point. From the data collected, the long term fading
was filtered out and the Weibull parameter α, as defined
previously, was estimated.

The normalized empirical autorrelation was computed
according to

ÂR (∆) =

∑N−∆

i=1
riri+∆∑N

i=1
r2
i

(6)

where ri is the i-th sample of the amplitude sequence, N
is the total number of samples, ∆ is the discrete relative
distance difference, and ÂR (.) denotes an empirical
average of AR (.).

The empirical autocorrelation function was compared
against the corresponding theoretical formula (2) and
plotted as a function of d/λ with the same parameter
α estimated from the experimental data. Furthermore, a

numerical measure of the mean error deviation1, ε, was
computed for each case. Figs. 1, 2, and 3 show some
sample plots comparing the experimental and theoretical
autocorrelation data for different values of α. Note the
excellent fitting and how the theoretical curve tends to keep
track of the change of concavity of the empirical data. As
can be observed, in the three cases the error deviation were
smaller than 2%.

Moreover, in order to explore the first and the second
order statistics, the CDFs2 were also computed for the
same cases of the autocorrelation functions. Figs. 4, 5,
and 6 show that the theoretical Weibull CDFs fit our
experimental results very well. For comparison purposes,
the Rayleigh CDFs are also shown. In all of the cases, the
Weibull distribution provides the best fitting, mainly in the
tail.

IV. CONCLUSIONS

In this paper we have reported the results of field trials
aimed at investigating the first and second-order statistics
of short term fading signals. It has been found an excellent
agreement between the experimental and the theoretical
data. The measurements validate the autocorrelation for-
mula derived in an exact manner in [10] for the Weibull
fading signal.
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1The mean error deviation between the measured data xi and the
theoretical value yi is defined as ε = 1

N

∑N
i=1

|yi−xi|
xi

, where N is
the number of points.

2The normalized Weibull CDF is given by FP (ρ) = 1− exp (−ρα),
where P = R/r̂ is the normalized envelope.
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Fig. 1. Empirical versus theoretical autocorrelation function
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Fig. 2. Empirical versus theoretical autocorrelation function
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Fig. 3. Empirical versus theoretical autocorrelation function
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Fig. 4. Empirical versus theoretical CDF
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Fig. 5. Empirical versus theoretical CDF
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Fig. 6. Empirical versus theoretical CDF


